The U.S. National Institute of Health has awarded us with R01 funding. Our laboratory has been working to refine the composition and microstructure of biodegradable Zn-based binary alloys and test their behavior in the vascular environment over the last four years in an effort to develop a metal with mechanical properties and biocompatibility required for endovascular stent applications. Having contributed enormously to the scientific understanding of Zn-based systems, we are now ready to develop more complex Zn-based alloys with 2-3 alloying elements that meet benchmark values for biodegradable stents, including: 1) have superior corrosion fatigue resistance that eliminates early stage (6 to 9 months) fracturing of biodegradable stents (common problem in Mg-based and Zn-based stents prototyped in the last several years); 2) maintain in vivo corrosion rates close to the 0.02 mm/year value; 3) exhibit >200 MPa yield strength, and >25-30% elongation to failure; and 4) demonstrate biocompatibility in terms of short- and long-term inflammatory responses, re-endothelialization, and suppressed intimal hyperplasia, similar or better than 316L stainless steel (industrial standard for stent materials).